مواد و توسعه آنها از پایههای تمدن به شمار میروند. به طوری که دورههای تاریخی را با مواد نامگذاری کردهاند: عصر سنگ، عصر برنز، عصر آهن، عصر فولاد، عصر سیلیکون و عصر کربن. ما اکنون در عصر کربن به سر میبریم. عصر جدید با شناخت یک مادة جدید به وجود نمیآید، بلکه با بهینه کردن و ترکیب چند ماده میتوان پا در عصر نوین گذاشت. دنیای نانومواد، فرصتی استثنایی برای انقلاب در مواد کامپوزیتی است.
کامپوزیت، ترکیبی است از چند مادة متمایز، به طوری که اجزای آن بهآسانی قابل تشخیص از یکدیگر باشند. یکی از کامپوزیتهای آشنا بتُن است که از دو جزء سیمان و ماسه ساخته میشود.
برای تغییر دادن و بهینه کردن خواص فیزیکی و شیمیایی مواد، آنها را کامپوز یا ترکیب میکنیم. به طور مثال، پُلی اتیلن که در ساخت چمنهای مصنوعی از آن استفاده میشود، رنگپذیر نیست و بنابراین، رنگ این چمنها اغلب مات به نظر میرسد. برای رفع این عیب، به این پلیمر وینیل استات میافزایند تا خواص پلاستیکی، انعطافی و رنگپذیری آن اصلاح شوند. در واقع، هدف از ایجاد کامپوزیت، به دست آوردن مادهای ترکیبی با خواص دلخواه است.
نانوکامپوزیت، همان کامپوزیت در مقیاس نانو متر است. نانوکامپوزیتها در دو فاز تشکیل میشوند. در فاز اول ساختاری بلوری در ابعاد نانو ساخته میشود که زمینه یا ماتریس کامپوزیت به شمار میرود. این زمینه ممکن است از جنس پلیمر، فلز یا سرامیک باشد. در فاز دوم ذراتی در مقیاس نانو به عنوان تقویتکننده برای استحکام، مقاومت، هدایت الکتریکی و... به فاز اول یا ماتریس افزوده میشود.
بسته به اینکه زمینة نانوکامپوزیت از چه مادهای تشکیل شده باشد، آن را به سه دستة پُلیمری، فلزی و سرامیکی تقسیم میکنند. کامپوزیتهای پلیمری به علت خواصی مانند استحکام، سفتی و پایداری حرارتی و ابعادی، چندین سال است که در ساخت هواپیماها به کار میروند. با رشد فناوری نانو، کامپوزیتهای پلیمری بیش از پیش به کار گرفته خواهند شد.
تقویت پلیمرها با استفاده از مواد آلی یا معدنی بسیار مرسوم است. از نظر ساختاری، ذرات و الیاف معمولاً باعث ایجاد استحکام ذاتی میشوند و ماتریس پلیمری میتواند با چسبیدن به مواد معدنی، نیروهای اعمالشده به کامپوزیت را به نحو یکنواختی به پُرکن یا تقویتکننده منتقل کند. در این حالت، خصوصیاتی چون سختی، شفافیت و تخلخلِ مادة درون کامپوزیت تغییر میکند. ماتریس پلیمری همچنین میتواند سطحِ پُرکن را از آسیب دور نماید و ذرات را طوری جدا از هم نگه دارد که رشد تَرَک به تأخیر افتد. گذشته از تمام این خصوصیات فیزیکی، اجزای مواد نانوکامپوزیتی میتوانند بر اثر تعامل بین سطح ماتریس و ذرات پُرکن، ترکیبی از خواص هر دو جزء را داشته باشند و بهتر عمل کنند.
کامپوزیتهایی که بستر فلزی دارند، کموزن و سبکاند و به علت استحکام و سختیِ بالا، کاربردهای وسیعی در صنایع خودرو و هوا ـ فضا پیدا کردهاند. اما این کاربردها به لحاظ ضعف در قابلیت کشیده شدن در چنین کامپوزیتهایی، محدود شدهاند. تبدیل کامپوزیت به نانوکامپوزیت سبب افزایش بازده استحکامی و رفع ضعفِ بالا میشود.
1-1- نانوکامپوزیتهای نانوذرهای
در این کامپوزیتها از نانو ذراتی همچون (خاک رس مونتمریلونیت، فلزات، و...) به عنوان تقویتکننده استفاده میشود. برای مثال، در نانوکامپوزیتهای پلیمری، از مقادیر کمّیِ (کمتر از 10درصدِ وزنی) ذرات نانومتری استفاده میشود. این ذرات علاوه بر افزایش استحکام پلیمرها، وزن آنها را نیز کاهش میدهند. مهمترین کامپوزیتهای نانوذرهای، سبکترین آنها هستند.
2-1- نانوکامپوزیتهای نانو تیوپ کربنی
نانو لوله های کربنی در دو گروه طبقهبندی میشوند: نانو لوله های تک دیواره و نانو لوله های چند دیواره. در این نوع از کامپوزیتها، این دو گروه از نانو لوله ها در بستری کامپوزیتی توزیع میشوند. در صورتی که قیمت نانولهها پایین بیاید و موانع اختلاط آنها رفع شود، کامپوزیتهای نانولولهای موجب رسانایی و استحکام فوقالعادهای در پلیمرها میشوند و کاربردهای حیرتانگیزی همچون آسانسور فضایی برای آن قابل تصور است.
تحقیقات در زمینة توزیع نانولولههای کربنی در پلیمرها بسیار جدید هستند. علاقه به نانولولههای تکدیواره و تلاش برای جایگزین کردن آنها در صنعت، به علت خصوصیات عالیِ مکانیکی و رسانایی الکتریکی آنها است. (رسانندگی الکتریکی این نانولولهها در حد فلزات است).
اما در دسترس بودن و تجاری بودن نانولولههای چنددیواره، باعث شده است که پیشرفت بیشتری در این زمینه صورت بگیرد. تا حدی که اکنون میتوان از محصولاتی نام برد که در آستانة تجاری شدنِ تولید هستند. برای نمونه، نانو لوله های کربنیِ چند جداره در پودرهای رنگ به کار رفتهاند.
استفاده از این نانولولهها باعث میشود که رسانایی الکتریکی در مقدار کمی از فاز تقویتکننده به دست آید. از نظر نظامی نیز فراهم کردن هدایت الکتریکی فرصتهای انقلابی به وجود خواهد آورد. به عنوان مثال، از پوستههای الکتریکی ـ مغناطیسی گرفته تا کامپوزیتهای رسانای گرما و لباسهای سربازان آینده!
3-1-نانوکامپوزیتِ خاک رُس ـ پلیمر
نانوکامپوزیت خاک رُس ـ پلیمر یک مثال موردی از محصولات فناوری نانو است. در این نوع ماده، از خاک رُس به عنوان پُرکننده برای بهبود خواص پلیمرها استفاده میشود. خاک رُسهای نوع اسمکتیت، ساختار لایهلایه دارند و هر لایه تقریباً یک نانومتر ضخامت دارد. صدها یا هزاران عدد از این لایهها به وسیلة یک نیروی واندروالسیِ ضعیف روی هم انباشته میشوند تا یک جزء رُسی را تشکیل دهند. با یک پیکربندی مناسب، این امکان وجود دارد که رُسها را به اَشکال و ساختارهای گوناگون، درون یک پلیمر به شکل سازمانیافته قرار دهیم.
معلوم شده است که بسیاری از خواص مهندسی، هنگامی که در ترکیب ما از میزان کمی ــ معمولا ً چیزی کمتر از 5 درصد وزنی ــ پُرکننده استفاده شود، بهبود قابل توجهی مییابد.
امتیاز دیگر نانوکامپوزیتهای خاک رُس ـ پلیمر این است که تأثیر قابل توجهی بر خواص اُپتیکی (نوری) پلیمر ندارند. ضخامت یک لایة رُس منفرد، بسیار کمتر از طول موج نور مرئی است. بنابراین، نانوکامپوزیتی که خوب ورقه شده باشد، از نظر اُپتیکی شفاف است. از طرفی، با توجه به اینکه امروزه حجم وسیعی از کالاهای مصرفی جامعه را پلیمرهایی تشکیل میدهند که بهراحتی میسوزند یا گاهی در مقابل شعله فاجعه میآفرینند، لزوم تحقیق در خصوص مواد دیرسوز احساس میشود. نتایج تحقیقات حاکی از آن است که میزان آتشگیری در این نانوکامپوزیتهای پلیمری حدود 70 درصد نسبت به پلیمر خالص کمتر است. در عین حال، اغلب خواص کاربردی پلیمر نیز تقویت میشوند.
اولین کاربرد تجاری نانوکامپوزیتهای خاک رُس ـ نایلون 6، به عنوان روکش نوار زمانسنج برای ماشینهای تویوتا، در سال 1991 بود. در حال حاضر نیز از این نانوکامپوزیت در صنعت لاستیک استفاده میشود. با افزودن ذرات نانومتریِ خاک رُس به لاستیک، خواص آن به طور قابل ملاحظهای بهبود پیدا میکند که از جمله میتوان در آنها به موارد زیر اشاره کرد:
- افزایش مقاومت لاستیک در برابر سایش
- افزایش استحکام مکانیکی
- افزایش مقاومت گرمایی
- کاهش قابلیت اشتعال
- کاهش وزن لاستیک
4-1-نانوکامپوزیت الماس ـ نانولوله
محققان توانستهاند سختترین مادة شناختهشده در جهان (الماس) را با نانولولههای کربنی ترکیب کنند و کامپوزیتی با خصوصیات جدید به دست آورند. اگرچه الماس سختیِ زیادی دارد، ولی به طور عادی هادی جریان الکتریسیته نیست. از طرفی، نانولولههای کربن به شکلی باورنکردنی سخت و نیز رسانای جریان الکتریسیتهاند. با یکپارچه کردن این دو فُرمِ کربن با یکدیگر در مقیاس نانومتر، کامپوزیتی با خصوصیات ویژه به دست خواهد آمد.
این کامپوزیت میتواند در نمایشگرهای مسطح کاربرد داشته باشد. الماس میتواند نانو لوله های کربنی را در مقابلِ از همگسیختگی حفظ کند. در حالی که به طور طبیعی، وقتی نمایشگر را فقط از نانولولههای کربنی بسازند، ممکن است از هم گسیخته شوند.
این کامپوزیت همچنین در ردیابیهای زیستی کاربرد دارد. نانولولهها به مولکولهای زیستی میچسبند و به عنوان حسگر عمل میکنند. الماس نیز به عنوان یک الکترود فوقالعاده حساس رفتار میکند. تنها چیزی که در این تحقیقات واضح نیست این است که الماس و نانولولههای کربنی چگونه محکم به هم میچسبند؟
5-1-جدیدترین خودرو نانوکامپوزیتی
این خودرو توسط شرکت جنرالموتورز طراحی شده و به علت استفاده از مواد نانوکامپوزیتی در قسمتهای مختلف آن، حدود 8 درصد سبکتر از نمونههای مشابه قبلی است و علاوه بر سبک بودن، در برابر تغییرات دمایی هم مقاومت میکند.
6-1-توپ تنیس نانوکامپوزیتی
شرکت ورزشی ویلسون، یک توپ تنیس دو لایه به بازار عرضه کرده که عمر مفید آن حدود چهار هفته است ــ در حالی که توپهای معمولی عمر مفیدشان در حدود دو هفته است ــ ولی از نظر خاصیت ارتجاعی و وزن تفاوتی بین این دو مشاهده نمیشود. علت مهم و اصلی دوام توپهای نانوکامپوزیتی، وجود یک لایة پوشش نانوکامپوزیتی به ضخامت 20 میکرون به عنوان پوستة داخلی است که باعث میشود هوای محبوس در داخل توپ ضمن ضربه خوردن خارج نگردد، درحالیکه توپهای معمولی از جنس لاستیک و در برابر هوا نفوذپذیرند.
7-1-الیاف نانو، تحولی در صنعت نساجی
امروزه ساخت کامپوزیتهای تقویتشده به وسیلة نانوالیاف پیشرفت چشمگیری کرده است. لیفچههای کربنیِ جامد و توخالی با چند میکرون طول و دو تا بیش از صد نانومتر قطر خارجی خلق شدهاند که مصارفی در مواد کامپوزیت و روکش دارند.
یکی از دانشجویان کارشناسی ارشد دانشکدة مهندسی نساجی دانشگاه امیرکبیر، دستگاه تولید نانوالیاف از محلول پلیمری را طراحی کرده و ساخته است. این دستگاه در فیلتراسیون مایعات، گازها و مولکولها، امور پزشکی مانند مواد آزادکنندة دارو در بدن، پوشش زخم، ترمیم پوست، نانوکامپوزیتها، نانوحسگرها، لباسهای محافظ نظامی و غیره کاربرد دارد.
مهمترین تأثیر نانوکامپوزیتها در آینده کاهش وزن محصولات خواهد بود. ابتدا کامپوزیتهای سبکوزن و بعد تجهیزات الکترونیکی کوچکتر و سبکتر در ماهوارههای فضایی.
سازمان فضایی آمریکا (ناسا) در حمایت از فناوری نانو بسیار فعال است. بزرگترین تأثیر فناوری نانو در فضاپیماها، هواپیماهای تجاری و حتی فناوری موشک، کاهش وزن مواد ساختمانیِ سازههای بزرگ درونی و بیرونی، جدارة سیستمهای درونی، اجزای موتور راکتها یا صفحات خورشیدی خواهد بود.
شکل 1. استفاده از نانوفناوری در بخشهای مختلف یک فضاپیما
در مصارف نظامی نیز کامپوزیتها موجب ارتقا در نحوه حفاظت از قطعات الکترونیکی حساس در برابر تشعشع و خصوصیات دیگر همچون ناپیدایی در رادار میشوند. کامپوزیتهای نانوذره سیلیکاتی به بازار خودروها وارد شدهاند. در سال 2001 هم جنرال موتورز و هم تویوتا شروع به تولید محصول با این مواد را اعلام کردند. فایده آنها افزایش استحکام و کاهش وزن است که مورد آخر صرفهجویی در سوخت را به همراه دارد.
علاوه بر این، نانوکامپوزیتها به محصولاتی همچون بستهبندی غذاها راه یافتهاند تا سدی بزرگتر در برابر نفوذ گازها باشند (مثلاً با حفظ نیتروژن درونِ بسته یا مقابله با اکسیژن بیرونی). همچنین خواص تعویق آتشگیریِ کامپوزیتهای سیلیکات نانوذرهای، میتواند در رختِ خواب، پردهها و غیره کاربردهای بسیاری پیدا کند.
8-1- نانوکامپوزیتهای دیرسوز
با توجه به این که امروزه حجم وسیعی از کالاهای مصرفی هر جامعهای را پلیمرهایی تشکیل میدهند که بهراحتی میسوزند یا گاهی در مقابل شعله فاجعه میآفرینند، لزوم تحقیق در خصوص مواد دیرسوز احساس میشود. بر همین اساس، در کشورهای صنعتی، تلاش گستردهای برای ساخت موادی با ایمنی بیشتر در برابر شعله آغاز شده است و در این زمینه نتایج مطلوبی هم به دست آمده است.
بر همین اساس و با توجه به تدوین استانداردهای جدید ایمنی، به نظر میرسد، استانداردهای ساخت مربوط به پلیمرهای مورد استفاده در خودروسازی، صنایع الکترونیک، صنایع نظامی و تجهیزات حفاظتی و حتی لوازم خانگی، در حال تغییر به سوی مواد دیرسوز است.
از طرف دیگر مدتی است که نانو کامپوزیتهای پلیمر –نانو خاک رس بنتونیت به عنوان موادی با خواص مناسب مثل تأخیر در شعلهوری، توجه بسیاری از محققان را به خود جلب کرده است. بنابراین بهنظر میرسد که نانوکامپوزیتهای پلیمر – خاک رس میتوانند جایگزین مناسبی برای مواد پلیمری معمولی باشند؛ برای تهیه پلیمرهای دیرسوز، علاوه بر رفتار آتشگیری، عوامل زیادی باید مورد توجه واقع شوند؛ از جمله اینکه از افزودنیهایی استفاده شود که قیمت تمامشده محصول را خیلی افزایش ندهد. (مواد افزودنی باید ارزان قیمت باشند). مواد افزودنی به پلیمرها باید به آسانی با پلیمر فرآیند شود. مواد افزودهشده به پلیمر نباید در خواص کاربردی پلیمر تغییر قابل ملاحظه ایجاد کند. زبالههای این مواد نباید مشکلات زیستمحیطی ایجاد کند.
با توجه به این موارد، خاک رس از جمله بهترین مواد افزودنی به پلیمرها محسوب میشود که میتواند آتشگیری آنها را به تأخیر بیندازد و سبب ایمنی بیشتر وسایل و لوازم شود. مزیت دیگر خاک رس فراوانی آن است که استفاده از این منبع خدادادی را آسان میکند.
9-1- ویژگیهای نانوکامپوزیتهای پلیمر – خاکرس
خواص مکانیکی نانوکامپوزیتهای پلیمر-نایلون 6 که از نظر حجمی فقط حاوی پنج درصد سیلیکات است، بهبود فوقالعادهای را نسبت به نایلون خالص از خود نشان میدهد. مقاومت کششی این نانوکامپوزیت 40 درصد بیشتر، مدول کششی آن 68 درصد بیشتر، انعطافپذیری آن 60 درصد بیشتر و مدول انعطاف آن 126 درصد بیشتر از پلیمر اصلی است. دمای تغییر شکل گرمایی آن نیز از 65 درجه سانتیگراد به 152 درجه سانتیگراد افزایش یافته است. در حالیکه در برابر همة این تغییرات مناسب، فقط 10درصد از مقاومت ضربه آن کاسته شده است.
نتایج تحقیقات حاکی از آن است که میزان آتشگیری در این نانوکامپوزیت پلیمری حدود 70 درصد نسبت به پلیمر خالص کاهش نشان میدهد و این در حالی است که اغلب خواص کاربردی پلیمر نیز تقویت میشود. البته کاهش در میزان آتشگیری پلیمرها از قدیم مورد بررسی بوده است. بشر با ترکیب مواد افزودنی به پلیمر میزان آتشگیری آن را کاهش داد، ولی متاسفانه خواص کاربردی پلیمر هم متناسب با آن کاهش یافته است. در واقع کاهش در آتشگیری همزمان با بهبود خواص کاربری پلیمرها ویژگی منحصر به فرد فناوری نانو است، خصوصاً اینکه تنها با افزودن 6 درصد ماده افزودنی به پلیمر تا 70 درصد آتشگیری آن کاهش مییابد.
برخی نانو کامپوزیتهای پلیمر – نانو خاک رس پایداری حرارتی بیشتری از خود نشان میدهند که اهمیت ویژهای برای بهبود مقاومت در برابر آتشگیری دارد. این مواد همچنین نفوذپذیری کمتری در برابر گاز و مقاومت بیشتری در برابر حلالها از خود نشان میدهند.